Tuesday, October 21, 2008

The Guardian discovers 3He

Someone doing a wee bit of research at The Guardian has discovered the abundance of Helium 3 thought be be present on Earth's Moon, and is, for some reason, speculating that the impending launch of India's Chandrayaan Lunar Orbiter may set off a Lunar "Land Grab."

The abundance of 3He on the lunar surface has, of course, long been estimated to be very extensive, relative to Earth; a result of solar wind ionization over ~4.527 Billion Years.

Russia, China, Japan and India have each announced a strong interest in future lunar exploration based on their hopes of harvesting 3He as the "fuel of the 21st Century" for nuclear fusion. Scientists in China recently tied the probable stores of 3He to deep and "optically mature" regolith fines, mostly on the Lunar Near Side. Evidence points toward a relative abundence of 3He in the equatorial Ocean of Storms and Sea of Tranqullity, resting place of perhaps 70 percent of the Moon's 3He/4He.

Theoretically, the abundance of 3He for fusion power (and Thorium for heat and fission power) could sustain a Gold Rush and colonization of Earth's Moon. NASA and the National Academy of Science, however, are cautiously encouraging a fuller exploration of the Moon "while relatively pristine, before extensive human activity."

On the Moon, and also within a dusty exosphere, that is more dynamic than previously proven, there is etched a history of the whole solar system. NASA is anxious to protect that history before even minor amounts of human activity inevitably make it harder to fully understand, its context spoiled by ballistics and footprints, let alone tractor-pulled factories.

The technology for utilizing the potential of 3He as fuel, for still-problematic fusion, is still a some time away. Just the logistics of harvesting lunar regolith, for heavier elements implanted by cosmic rays and for far lighter elemental ionic Helium awaits far more extensive investigations of the Moon, and also solutions to problems like lunar dust and human and robotic survival.

American scientists have speculated 100 tons of cargo could yield rocket fuel from cold-trapped super ice believed to rest in permanently-shaded depths at both the Lunar North and South Poles. It isn't very difficult to speculate on what damage might be done if rakes and mobile processing factories begin scraping wide expanses of the Near Side "seas" for elements valuable and rare on Earth.

While the Moon has no known "environment" (or protected species), its Africa-sized land area is also believed to hold important clues to the history of the solar system, even pieces of Earth older than any known rocks yet discovered on the Earth itself. NASA is encouraging international cooperation both to sustain lunar exploration and to make that exploration comprehensive and deliberate.

Then there's the dust, the smallest, sub-micron-sized particles where 20 percent of the Moon's 3He is thought to be implanted. Lunar dust may be both the solution and the problem ahead of comprehensive Lunar exploration, abrasive to seals and equipment, perhaps toxic, and almost certainly migratory, leviated when ionized and exposed to the long trailing tail of Earth's magnetosphere and deposited like rain when the charging breaks down.

Far from barren, cosmic elementals may be deposited in widely disbursed microscopic deposits.

The Guardian may just be discovering these facts, but lunar and planetary scientists are way ahead of them, and already jealously guarding the need to decypher the Moon's pristine recording of billions of years of history before foot prints and pick axes can spoil that important science.