Join STEREO and Explore Gravitational "Parking Lots" That May Hold Secret of Moon's Origin
Goddard Space Flight Center
Two places on opposite sides of Earth may hold the secret to how the moon was born. NASA's twin Solar Terrestrial Relations Observatory (STEREO) spacecraft are about to enter these zones, known as the L4 and L5 Lagrangian points, each centered about 93 million miles away along Earth's orbit.
As rare as free parking in New York City, L4 and L5 are among the special points in our solar system around which spacecraft and other objects can loiter. They are where the gravitational pull of a nearby planet or the sun balances the forces from the object's orbital motion. Such points closer to Earth are sometimes used as spaceship "parking lots", like the L1 point a million miles away in the direction of the sun. They are officially called Libration points or Lagrangian points after Joseph-Louis Lagrange, an Italian-French mathematician who helped discover them.
L4 and L5 are where an object's motion can be balanced by the combined gravity of the sun and Earth. "These places may hold small asteroids, which could be leftovers from a Mars-sized planet that formed billions of years ago," said Michael Kaiser, Project Scientist for STEREO at NASA's Goddard Space Flight Center in Greenbelt, Md. "According to Edward Belbruno and Richard Gott at Princeton University, about 4.5 billion years ago when the planets were still growing, this hypothetical world, called Theia, may have been nudged out of L4 or L5 by the increasing gravity of the other developing planets like Venus and sent on a collision course with Earth. The resulting impact blasted the outer layers of Theia and Earth into orbit, which eventually coalesced under their own gravity to form the moon."
This theory is a modification of the "giant impact" theory of the moon's origin, which has become the dominant theory because it explains some puzzling properties of the moon, such as its relatively small iron core. According to giant impact, at the time of the collision, the two planets were large enough to be molten, so heavier elements, like iron, sank to their centers to form their cores.
The impact stripped away the outer layers of the two worlds, which contained mostly lighter elements, like silicon. Since the moon formed from this material, it is iron-poor.
As rare as free parking in New York City, L4 and L5 are among the special points in our solar system around which spacecraft and other objects can loiter. They are where the gravitational pull of a nearby planet or the sun balances the forces from the object's orbital motion. Such points closer to Earth are sometimes used as spaceship "parking lots", like the L1 point a million miles away in the direction of the sun. They are officially called Libration points or Lagrangian points after Joseph-Louis Lagrange, an Italian-French mathematician who helped discover them.
L4 and L5 are where an object's motion can be balanced by the combined gravity of the sun and Earth. "These places may hold small asteroids, which could be leftovers from a Mars-sized planet that formed billions of years ago," said Michael Kaiser, Project Scientist for STEREO at NASA's Goddard Space Flight Center in Greenbelt, Md. "According to Edward Belbruno and Richard Gott at Princeton University, about 4.5 billion years ago when the planets were still growing, this hypothetical world, called Theia, may have been nudged out of L4 or L5 by the increasing gravity of the other developing planets like Venus and sent on a collision course with Earth. The resulting impact blasted the outer layers of Theia and Earth into orbit, which eventually coalesced under their own gravity to form the moon."
This theory is a modification of the "giant impact" theory of the moon's origin, which has become the dominant theory because it explains some puzzling properties of the moon, such as its relatively small iron core. According to giant impact, at the time of the collision, the two planets were large enough to be molten, so heavier elements, like iron, sank to their centers to form their cores.
The impact stripped away the outer layers of the two worlds, which contained mostly lighter elements, like silicon. Since the moon formed from this material, it is iron-poor.
No comments:
Post a Comment