Saturday, November 1, 2014

Lunar exploration will reduce shortage of rare earths

The store of our knowledge of the Moon grew exponentially in the wake of America's brief but still lingering commitment to the Vision for Space Exploration (2004-2009), without which the LCROSS, LRO, LADEE and GRAIL missions would not have been funded.
A planned Russian return to the lunar
surface may benefit from a post-
Fobos-Grunt shakeout.
Aram Ter-Ghazaryan
Special to Russia Beyond the Headlines

As part of the Federal Space Program, Moon exploration operations will be launched in 2016. In 2018 the first spacecraft will be sent to the Moon to deliver comet material back to Earth. 

A manned flight is scheduled for 2030-2031. Future plans include the mining of rare earth metals required for the development of high-tech industries.

Scientists from the Russian Academy of Sciences, the Moscow State University Sternberg Astronomical Institute and the Russian Federal Space Agency are participating in this Moon exploration project.

The first spacecraft to be sent to the Moon will be relatively simple. According to Vladislav Shevchenko, the Sternberg Institute’s Head of the Department of Lunar and Planetary Research, this is because the Russian space program has not carried out a Moon landing for over 40 years.

“The last Luna-24 launch was carried out in 1976. The current spacecraft, Luna-25, is a lot lighter than its predecessor, as its main mission is to bring back ice from the lunar south pole,” Shevchenko said. According to him, the south pole was chosen because according to satellite data, it houses the largest reserves of frozen volatile gases found in comets.

Read the full article at Russia Beyond the Headlines, HERE.

The last direct sample of the Moon returned to Earth was retrieved by the Soviet Union's Luna 24 robotic lander on August 18, 1976 (in total darkness). The vehicle landed on the rim of this 64 meter-wide crater on the southeastern plains of Mare Crisium (12.717°N, 62.222°E) and the Lunar Reconnaissance Orbiter (LRO) LROC Narrow Angle Cameras (NAC) imaged the lander's descent stage (lower left) on November 2, 2011, from only 25.57 km overhead. LROC NAC M174868307L, LRO orbit 10904, resolution 43 cm per pixel [NASA/GSFC/Arizona State University].

No comments: